
Combinatorics in Banach space theory
PROBLEMS (Part 2)∗

PROBLEM 2.1. Show that every almost disjoint family of subsets of ω is contained in
a maximal (with respect to inclusion) almost disjoint family of subsets of ω and every
such maximal family must be uncountable.
Remark. Of course, this type of argument proves only the existence of almost disjoint families
of cardinality ω1. However, we know that there exist such families of cardinality c.

PROBLEM 2.2. Recall that a family F ⊂ P(ω) of subsets of ω is called an independent
family whenever for every pairwise different A1, . . . , Am, B1, . . . , Bn ∈ F the set

m⋂
i=1

Ai ∩
n⋂
j=1

(ω \Bj)

is infinite. Reconstruct Hausdorff’s proof of the fact that there exists an independent
family of subsets of ω which has cardinality c. The plan is the following: Let I =
{(n,A) : n ∈ ω, A ⊆ P(n)} and for each X ⊆ ω let X ′ = {(n,A) ∈ I : X ∩ n ∈ A} (we
treat natural numbers as ordinals, i.e. n = {0, 1, . . . , n−1}). Verify that {X ′ : X ∈ P(ω)}
is the desired independent family.
Remark. The existence of independent families F ⊂ P(ω) with |F| = c was first proved by
G.M. Fichtenholz and L.V. Kantorovich in 1935. F. Hausdorff’s proof was published one year
later. Its advantage is that it generalises to higher cardinals.

PROBLEM 2.3. Let x ∈ `∞/c0 and let (xn)∞n=1 ∈ `∞ be any element of the coset x.
Show that the norm of x in `∞/c0 (that is, the distance from (xn)∞n=1 to the subspace
c0 of `∞) may be calculated as ‖x‖ = lim supn |xn|. Use this norm to define a Lipschitz
retraction of `∞ onto c0, i.e. a surjective Lipschitz map f : `∞ → c0 such that f |c0 is the
identity on c0.
Remark. The desired retraction has no chance to be linear as we know that c0 is not comple-
mented in `∞.

PROBLEM 2.4. Show that `∞/c0 contains a subspace isometric to c0(c).
Hint. Take an almost disjoint family of subsets of ω which has cardinality c and use the formula
for the norm in `∞/c0 (see Problem 2.3).

PROBLEM 2.5. Show that `1(Γ) has the Schur property, for any non-empty set Γ.
Hint. You are welcomed to use the Schur property of `1.

PROBLEM 2.6. Let X be an infinite-dimensional closed subspace of `1. Prove that X∗

is non-separable.
Hint. In any infinite-dimensional normed space the weak closure of the unit sphere is the unit
ball (why?); in particular 0 ∈ SwX .

∗Evaluation: =2pt, =3pt, =4pt
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PROBLEM 2.7. By using the Fichtenholz–Kantorovich–Hausdorff theorem (which is to
be proved in Problem 2.9) show that for every infinite cardinal number κ the space `1(2κ)
is isometrically isomorphic to a subspace of `∞(κ). This generalises Problem 1.14(b).
Hint. This is really easy with such a heavy tool in hand!
Remark. With the same (short) proof one may show that if K is a compact Hausdorff space
admitting an independent family of clopen sets of cardinality λ, then `1(λ) embeds isometrically
into C(K). The Stone–Čech compactification βκ of any infinite cardinal number κ (equipped
with the discrete topology) admits a κ-independent family of clopen sets of cardinality 2κ,
which follows directly from the Fichtenholz–Kantorovich–Hausdorff theorem and the fact that
βκ is nothing else but the Stone space for the Boolean algebra P(κ). Moreover, we know that
C(βκ) ' `∞(κ) isometrically, so the above statement yields a more universal version of what
is claimed in the problem.

PROBLEM 2.8. Let K be a compact Hausdorff space for which there is a disjoint family
of cardinality κ consisting of non-empty open sets. Show that c0(κ) is isometrically
isomorphic to a subspace of C(K).

PROBLEM 2.9. Let κ be an infinite cardinal number. A family F ⊂ P(κ) of subsets
of κ is called a κ-independent family whenever for every pairwise different A1, . . . , Am,
B1, . . . , Bn ∈ F the set

m⋂
i=1

Ai ∩
n⋂
j=1

(κ \Bj)

has cardinality κ. Generalise Hausdorff’s proof from Problem 2.2 to show that there
exists a κ independent family of subsets of κ which has cardinality 2κ.
Remark. The classical application of the above assertion is in the proof of Posṕı̌sil’s theorem
from 1939, which asserts that there exist exactly 22

κ
uniform (that is, having all elements of the

same cardinality) ultrafilters on κ.

PROBLEM 2.10. Prove the converse to the assertion of Problem 2.8: If κ is a cardinal
number and K is a compact Hausdorff space such that C(K) contains an isomorphic
(not necessarily isometrically) copy of c0(κ), then K has a disjoint family of cardinality
κ consisting of non-empty open sets.
Hint. By the assumption, there is a bounded linear operator T : c0(κ)→ C(K) which is an iso-
morphism onto its range, which means that T is bounded below. Consider the ranges of the
standard unit vectors (eα)α<κ of c0(κ) and, with the aid of them, define κ open subsets of K
which do not intersect ‘too much’. Then, try to extract an appropriate subfamily. This has a bit
of combinatorial flavour, similar to that of Rosenthal’s lemma.
Remark. Since βN is separable (N is dense in βN), it satisfies the c.c.c. (the countable chain
condition, i.e. every disjoint family of non-empty open sets is countable). Hence, because of the
identification C(βN) ' `∞, the above assertion implies that c0(ω1) does not embed isomor-
phically into `∞, which was to be proved in a more direct way in Problem 1.14(a) (the hints
suggested therein were also good enough to replace c by ω1).

PROBLEM 2.11. Let p ∈ [1,∞) \ {2} and T : `p → `p be a surjective linear isometry.
Show that there exists a permutation π of the set of all natural numbers and a sequence
of scalars (εn)∞n=1 with |εn| = 1 for n ∈ N such that T (x) = (εnxπ(n))∞n=1 for every
x = (xn)∞n=1 ∈ `p.
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Hint. First show that for any x, y ∈ `p the equalities ‖x + y‖p = ‖x − y‖p = ‖x‖p + ‖y‖p
imply that x and y have disjoint supports. For p = 1 it is easy; for p > 1 you are allowed to
use the following Lamperti–Clarkson inequality: If ϕ : [0,∞) → [0,∞) is continuous, strictly
increasing, ϕ(0) = 0 and ϕ(

√
t) is convex, then

ϕ(|z + w|) + ϕ(|z − w|) > 2ϕ(|z|) + 2ϕ(|w|) for all z, w ∈ C.

The reverse inequality is valid provided ϕ(
√
t) is concave, and in the case where that convexity or

concavity is strict the above inequality becomes equality if and only if zw = 0 (see [R.J. Fleming,
J.E. Jamison, Isometries on Banach Spaces, vol. 1, Lemma 3.2.1]). Then, use that observation
for x = T (em) and y = T (en), where em and en are standard unit vectors in `p with m 6= n.
Remark. Recall that the famous theorem due to S. Mazur and S. Ulam (1932) says that any
surjective isometry between two real normed spaces must be affine (that is, a translation of
a linear map). Combining this with the above assertion we get the general description of any
surjective isometry from the real `p-space onto itself, for p ∈ [1,∞) \ {2}.

PROBLEM 2.12. Show that the space `n2 is not isometric to any subspace of c0, whenever
n > 2.
Hint. How many extreme points are there on the unit ball of `2n? How many on the unit ball
of any finite-dimensional subspace of c0? To answer the latter question you may use Problem
1.8(a) and the fact that finite-dimensional balls are compact.
Remark. This problem should be contrasted with the (quite simple) fact that every Banach
space X is finitely representable in c0, that is, for every finite-dimensional subspace E of X ,
and every ε > 0, there exists a finite-dimensional subspace F of c0 with dimE = dimF and
a linear isomorphism T : E → F satisfying ‖T‖ · ‖T−1‖ < ε (see [F. Albiac, N.J. Kalton,
Topics in Banach Space Theory, §11.1]). In particular, `2 is finitely representable in c0 which
means that the finite-dimensional spaces `n2 (for n ∈ N) are arbitrarily close (in the sense of the
Banach–Mazur distance) to some finite-dimensional subspaces of c0. However, for n > 2 they
are never isometric to them.

Let us mention that A. Dvoretzky proved in 1961 that `2 is finitely representable in every
Banach space. This is one of the deepest and most fundamental achievements in geometry of
Banach spaces.

PROBLEM 2.13. Let X be a Banach space. Suppose T : `∞ → X is a weakly compact
linear operator which vanishes on the subspace c0. Prove that there exists an infinite
set A ⊂ N such that T vanishes on `∞(A), where

`∞(A) =
{

(ξn)∞n=1 ∈ `∞ : ξn = 0 for every n 6∈ A
}
.

Hint. You should use the fact that every weakly compact operator on `∞ is Dunford–Pettis (see
Problem 1.11). Try also to mimic the argument in the proof of Proposition 1.4 from the lecture
notes.
Remark. A Banach space Y is said to have the Dunford–Pettis property if every weakly compact
operator from Y into another Banach space is a Dunford–Pettis operator. Examples of such
spaces are: C(K)-spaces with K being a compact and Hausdorff space (A. Grothendieck, 1953),
so in particular the space `∞ ' C(βN), and L1(µ)-spaces with a σ-finite measure µ (N. Dunford,
B.J. Pettis and R.S. Phillips, 1940); see [F. Albiac, N.J. Kalton, Topics in Banach Space Theory,
Theorem 5.4.5].
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PROBLEM 2.14. Let K be a compact Hausdorff space such that C(K) contains an iso-
morphic copy of `∞. Prove that K has a subset homeomorphic to βN.
Hint. First show that the assertion follows from the following proposition: If `∞ embeds isomor-
phically into C(K), then there exists an infinite set L ⊂ K such that A ∩ B = ∅ for every
A,B ⊂ L with A∩B = ∅. To prove this statement use the adjoint operator of an isomorphism
from `∞ into C(K) and apply Rosenthal’s lemma.
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